Abstract
Macroscopic damage in multilayer anisotropic structures is usually formed by the rapid development of material micro-damage. The existing micro-damage imaging detection technology does not consider the difference of wave velocity in all directions of the detection structure, especially not directly taking the wave velocities in different direction into the imaging counting process, the micro-damage imaging detection, and the false detection rate and missed detection rate are high. In this paper, a deep learning imaging detection method considering velocity in all directions is proposed and verified on a carbon fiber anticorrosive coating structure of a shaftless ring propeller drive system. Firstly, the problem that the elliptical damage path cannot be determined in the anisotropic structure is analyzed, and the omnidirectional velocity of the carbon fibre reinforced plastics structure is obtained through simulation analysis. A new omni-directional imaging method was proposed, which discretized the monitored objects and acquired the damage index through deep learning network. The damage propagation time of the reference point was compared with that of the actual damage point to determine the damage probability of the structure. The experimental results show that the omni-directional imaging method can accurately and intuitively display the damage information of anisotropic structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.