Abstract
Three-phase pulsewidth modulation inverter fed induction motor drive system is widely applied in high power drive applications. Sensor faults are very common in the drive system, which, once occur, might result in degraded system performance or even system shutdown. In order to rapidly and accurately diagnose the sensor faults, this paper proposes an intelligent time-adaptive data-driven method to identify the fault location and fault type of sensors in the drive system. An emerging machine learning technology named extreme learning machine (ELM) is applied to learn the sensor fault dataset; an ensemble ELM classifier is then designed to improve diagnostic accuracy, based on which a time-adaptive fault diagnosis process is proposed to achieve a high and balanced diagnostic accuracy and speed. As a data-driven method, the proposed method only employs the phase current, dc-link voltage, and speed signals as the inputs to the ensemble ELM classifiers and requires no additional sensors and other hardware. Simulated and experimental tests show that the proposed method can rapidly and accurately detect the fault sensor location and identify offset fault, stuck fault, and noise faults with an average diagnostic accuracy of 98% and the average decision time of 10 ms after the fault occurs. Moreover, such diagnosis method is robust to the fluctuation of catenary voltage and dc-link voltage, fault severity, and variation of model parameters, speed, and load.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.