Abstract
The explosive increase in educational data and information systems has led to new teaching practices, challenges, and learning processes. To effectively manage and analyze this information, it is crucial to adopt innovative methodologies and techniques. Recommender systems (RSs) offer a solution for advising students and guiding their learning journeys by utilizing statistical methods such as machine learning (ML) and graph analysis to analyze program and student data. This paper introduces an RS for advisors and students that analyzes student records to develop personalized study plans over multiple semesters. The proposed system integrates ideas from graph theory, performance modeling, ML, explainable recommendations, and an intuitive user interface. The system implicitly implements many academic rules through network analysis. Accordingly, a systematic and comprehensive review of different students’ plans was possible using metrics developed in the mathematical graph theory. The proposed system systematically assesses and measures the relevance of a particular student’s study plan. Experiments on datasets collected at the University of Dubai show that the model presented in this study outperforms similar ML-based solutions in terms of different metrics. Typically, up to 86% accuracy and recall have been achieved. Additionally, the lowest mean square regression (MSR) rate of 0.14 has been attained compared to other state-of-the-art regressors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.