Abstract

The ground-breaking combination of photodynamic therapy (PDT) and photothermal therapy (PTT) has attracted much attention in medical fields as an effective method for fighting cancer. However, evidence suggests that the therapy efficiency is still limited by shallow light penetration depth and poor photosensitizer loading capacity. Herein, we constructed an upconversion nanoparticle@Zr-based metal-organic framework@indocyanine green molecule (UCNPs@ZrMOF@ICG) nanocomposite to integrate 1532 nm light-triggered PDT and 808 nm light-mediated PTT. NaLnF4 nanoparticles are designed to emit upconversion luminescence (UCL) under 1532 nm laser excitation, which is consistent with the absorption spectra of the ZrMOF. Benefiting from the excellent energy transfer efficiency, the ZrMOF can absorb visible light from the UCNPs and then catalyze O2 into 1O2 for deep tissue PDT. To achieve combination therapy, the clinically approved ICG nanocomposite was introduced as a photothermal agent for PTT under 808 nm laser irradiation, and the photothermal conversion efficiency was calculated to be ∼28%. The designed nanosystems facilitate efficient deep-tissue tumor treatment by integrating PDT with PTT. Ultimately, this study creates a multifunctional nanocomposite by combining 1532 nm light-triggered deep tissue PDT and near-infrared (NIR) light-driven PTT for personalized cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.