Abstract

Natural ecosystems have been facing a major threat due to deforestation and forest fires for the past decade. These environmental challenges have led to significant biodiversity loss, disruption of natural habitats, and adverse effects on climate change. The integration of Artificial Intelligence (AI) and Optimization techniques has made a revolutionary impact in disaster management, offering new avenues for early detection and prevention strategies. Therefore, to prevent the outbreak of a forest fire, an efficient forest fire diagnosis and aversion system is needed. To address this problem, an IoT-based Artificial Intelligence (AI) technique for forest fire detection has been proposed. This system leverages the Internet of Things (IoT) to collect real-time data from various sensors deployed in forest areas, providing continuous monitoring and early warning capabilities. Several researchers have contributed different techniques to predict forest fires at various remote locations, highlighting the importance of innovative approaches in this field. The proposed work involves object detection, which is facilitated by EfficientDet, a state-of-the-art object detection model known for its accuracy and efficiency. EfficientDet enables the system to accurately identify potential fire outbreaks by analyzing visual data from the sensors. To facilitate efficient detection at the outbreak of forest fires, a bi-directional gated recurrent neural network (Bi-GRU-NN) is needed. This neural network architecture is capable of processing sequential data from multiple directions, enhancing the system’s ability to predict the spread and intensity of fires. Crow Search Optimization (CSO) and fractional calculus are used to create an optimal solution in the proposed crow search fractional calculus optimization (CSFCO) algorithm for deep learning. CSO is inspired by the intelligent foraging behavior of crows, and when combined with fractional calculus, it provides a robust optimization framework that improves the accuracy and efficiency of the AI model. Experimental analysis shows that the proposed technique outperformed the other existing traditional approaches with an accuracy of 99.32% and an error rate of 0.12%. These results demonstrate the effectiveness of the integrated AI and optimization techniques in enhancing forest fire detection and prevention. The high accuracy and low error rate underscore the potential of this system to be a valuable tool in mitigating the risks associated with forest fires, ultimately contributing to the preservation of natural ecosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.