Abstract

Integrins are membrane receptors mediating cell adhesion and mechanosensing. The structure-function relationship of integrins remains incompletely understood, despite the extensive studies due to its importance to basic cell biology and translational medicine. Using fluorescence dual biomembrane force probe, microfluidics and cone-and-plate rheometry, we applied precisely-controlled mechanical stimulations to platelets and identified an intermediate state of integrin αIIbβ3, which is characterized by an ectodomain conformation, ligand affinity and bond lifetimes that are all intermediate between the well-known inactive and active states. This intermediate state is induced by ligand engagement of GPIbα via a mechano-signaling pathway and potentiates the outside-in mechano-signaling of αIIbβ3 for further transition to the active state during integrin mechanical affinity maturation. Our work reveals distinct αIIbβ3 state transitions in response to biomechanical and biochemical stimuli, and identifies a role for the αIIbβ3 intermediate state in promoting biomechanical platelet aggregation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.