Abstract

Targeting histone epigenetic modification is an important strategy for anticancer therapy. Histone deacetylase inhibitors (HDACis) have been clinically approved in the treatment of diverse hematological cancers, but mechanisms of drug resistance and poor therapeutic efficacy in solid malignancies remain largely unknown. In this study, we applied a mass spectrometry-based quantitative proteomic strategy to investigate the molecular differences in HDACi vorinostat (SAHA) sensitive and resistant cell lines. The proteomic results revealed that the glycolysis pathway was highly enriched after vorinostat treatment in the resistant cell line, leading to the prediction of a new drug combination, SAHA and hexokinase inhibitor (2-deoxyglucose). The efficacy of this combination was further verified in several solid tumor cell lines. Quantitative proteomics revealed that alterations in the transcription process and protein homeostasis could play roles in the synergetic utilization of these two compounds. Our study showed the application of proteomics in elucidating the drug mechanism and predicting drug combination and the potential of expanding the utilization of HDACi.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.