Abstract

BackgroundThe AMP-activated protein kinase (AMPK) is an evolutionarily conserved regulator of cellular energy homeostasis. As a nexus for transducing metabolic signals, AMPK cooperates with other energy-sensing pathways to modulate cellular responses to metabolic stressors. With metabolic reprogramming being a hallmark of cancer, the utility of agents targeting AMPK has received continued scrutiny and results have demonstrated conflicting effects of AMPK activation in tumorigenesis. Harnessing multi-omics datasets from human tumors, we seek to evaluate the seemingly pleiotropic, tissue-specific dependencies of AMPK signaling dysregulation.MethodsWe interrogated copy number variation and differential transcript expression of 92 AMPK pathway genes across 21 diverse cancers involving over 18,000 patients. Cox proportional hazards regression and receiver operating characteristic analyses were used to evaluate the prognostic significance of AMPK dysregulation on patient outcomes.ResultsA total of 24 and seven AMPK pathway genes were identified as having loss- or gain-of-function features. These genes exhibited tissue-type dependencies, where survival outcomes in glioma patients were most influenced by AMPK inactivation. Cox regression and log-rank tests revealed that the 24-AMPK-gene set could successfully stratify patients into high- and low-risk groups in glioma, sarcoma, breast and stomach cancers. The 24-AMPK-gene set could not only discriminate tumor from non-tumor samples, as confirmed by multidimensional scaling analyses, but is also independent of tumor, node and metastasis staging. AMPK inactivation is accompanied by the activation of multiple oncogenic pathways associated with cell adhesion, calcium signaling and extracellular matrix organization. Anomalous AMPK signaling converged on similar groups of transcriptional targets where a common set of transcription factors were identified to regulate these targets. We also demonstrated crosstalk between pro-catabolic AMPK signaling and two pro-anabolic pathways, mammalian target of rapamycin and peroxisome proliferator-activated receptors, where they act synergistically to influence tumor progression significantly.ConclusionGenetic and transcriptional aberrations in AMPK signaling have tissue-dependent pro- or anti-tumor impacts. Pan-cancer investigations on molecular changes of this pathway could uncover novel therapeutic targets and support risk stratification of patients in prospective trials.

Highlights

  • The AMP-activated protein kinase (AMPK) is an evolutionarily conserved regulator of cellular energy homeostasis

  • Pan-cancer genomic and transcriptional alterations of AMPK pathway genes Focusing on the genomic and transcriptomic landscape of 92 genes associated with AMPK signaling retrieved from Kyoto encyclopedia of genes and genomes (KEGG) across 21 cancer types involving 18,484 patients (Additional file 1), we interrogated somatic copy number alterations (SCNA) and mRNA expression

  • The highest number of amplified AMPK pathway genes was observed in esophageal carcinoma (ESCA; 44 genes) followed by bladder cancer (BLCA; 42 genes) and lung cancer (41 genes in both lung squamous cell carcinoma [LUSC] and adenocarcinoma [LUAD]) (Fig. 1)

Read more

Summary

Introduction

The AMP-activated protein kinase (AMPK) is an evolutionarily conserved regulator of cellular energy homeostasis. As a nexus for transducing metabolic signals, AMPK cooperates with other energy-sensing pathways to modulate cellular responses to metabolic stressors. The AMP-activated protein kinase (AMPK) is an evolutionary conserved key player responsible for energy sensing and homeostasis. The first link between AMPK and cancer was identified through the tumor-suppressive function of LKB1, which is upstream of the mTOR pathway [3]. The tumor-suppressive roles of AMPK were pharmacologically demonstrated by the application of metabolic inhibitors such as the anti-diabetic metformin and the mimetic of AMP, AICAR [4,5,6]. Numerous studies have since compellingly established the promiscuous nature of these pharmacological agents, whereby the inhibition of cancer cell proliferation occurs through non-specific AMPK-independent avenues [7, 8]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.