Abstract

Despite significant research progress on the problem of managing systems development risk, we are yet to see this problem addressed from an economic optimization perspective. Doing so entails answering the question: What mitigations should be planned and deployed throughout the life of a systems development project in order to control risk and maximize project value? We introduce an integrative economic optimization approach to solving this problem. The approach is integrative since it bridges two complementary research streams: one takes a traditional microlevel technical view on the software development endeavor alone, another takes a macrolevel business view on the entire life cycle of a systems project. Bridging these views requires recognizing explicitly that value-based risk management decisions pertaining to one level impact and can be impacted by decisions pertaining to the other level. The economic optimization orientation follows from reliance on real options theory in modeling risk management decisions within a dynamic stochastic optimization setting. Real options theory is well suited to formalizing the impacts of risk as well as the asymmetric and contingent economic benefits of mitigations, in a way that enables their optimal balancing. We also illustrate how the approach is applied in practice to a small realistic example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.