Abstract

NAD+-dependent dehydrogenase-based biosensors usually suffer from the low accuracy due to the interference of cofactors in the complex environment, such as fermentation samples. Herein, we demonstrate the example of an integrated biosensor device that can be applied for analyzing xylose fermentation samples. The device is composed of one chamber for the elimination of NAD+ and NADH in the fermentation broth and another chamber for the sample analysis. In the first chamber, a cyclic voltammetry method coupled with Ni foam as a working electrode was proven to be effective in removing NAD+ and NADH in the fermentation broth. In the other chamber, xylose dehydrogenase, as the recognition element, and diaphorase, used for the regeneration of bioactive NAD+ mediated by vitamin K3, were co-immobilized on the surface of the magnetic nanoparticles, which was further coated onto a magnetic glassy carbon electrode. The detection range of the constructed biosensor was from 0.5 to 10 g L−1 with a detection limit of 0.01 g L−1 at a signal-to-noise ratio of 3. Moreover, the biosensor achieved high selectivity, recovery, reproducibility, and good long-time stability when analyzing real xylose fermentation samples, suggesting its promising application potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.