Abstract

ABSTRACTWe present the analysis of a multi‐azimuth vertical seismic profiling data set that has been acquired in a tight gas field with the objective of characterizing fracture distributions using seismic anisotropy. We investigate different measurements of anisotropy, which are shear‐wave splitting, P‐wave traveltime anisotropy and azimuthal amplitude variation with offset. We find that for our field case shear‐wave splitting is the most robust measure of azimuthal anisotropy, which is clearly observed over two distinct intervals in the target. We compare the results of the vertical seismic profiling analysis with other borehole data from the same well. Cross‐dipole sonic and Formation MicroImager data from the reservoir section suggest that no open fractures intersect the well or are present within half a metre of the borehole wall. Furthermore, a detailed dispersion analysis of the sonic scanner data provides no indication of stress‐induced seismic anisotropy along the logged borehole section. We therefore explain the azimuthal anisotropy measured in the vertical seismic profiling data with a model that contains discrete fracture corridors, which do not intersect the well itself but lie within the vertical seismic profiling investigation radius. We show that such a model can reproduce some basic characteristics of azimuthal anisotropy observed in the vertical seismic profiling data. The model is also consistent with well test data that suggest the presence of a fracture corridor away from the well. With this study we demonstrate the necessity of integrating different data types that investigate different scales of rock volume and can provide complementary information for understanding the characteristics of fracture networks in the subsurface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.