Abstract

In this study, an integrated engineering system was developed for bioenergy production from food waste pretreated with a cost-effective and highly active enzyme mixture, namely fungal mash which was also in-situ produced from food waste. Under the optimized conditions, 141.5g/L of glucose was obtained with 67.5% of total solid reduction after hydrolysis of food waste by fungal mash, while 71.8g/L of bioethanol was produced from subsequent glucose fermentation. The remaining hydrolysis residue was further anaerobically digested for biomethane production with 22.8% of total solid reduction. As the result, about 90% of total solid reduction of food waste was achieved in the integrated engineering system with the outputs of bio-renewable energy in the forms of bioethanol and biomethane. The cost-benefit analysis clearly suggests that the bioenergy production from food waste in the proposed integrated engineering system is technically feasible and economically viable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.