Abstract

Due to its high specific capacity (in theory), molybdenum disulfide (MoS2) has been recognized as a plausible substitute in lithium-ion batteries (LIBs). However, it suffers from an inferior electric conductivity and a substantial volume change during Li+ insertion/extraction. By using a facile hydrothermal method, a flexible free-standing MoS2 electrode has here been fabricated onto a carbon cloth substrate. The grafting of ultrathin MoS2 nanoflakes onto the carbon cloth framework (forming CC@MoS2), was shown to facilitate an improved electron transport, as well as an enhanced Li+ transport. As expected, the as-obtained CC@MoS2 electrode was observed to exhibit an excellent lithium storage performance. It delivers a high discharge specific capacity of 2.42 mA h cm−2 at 0.7 mA cm−2 (even after 100 cycles), which is an impressive result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.