Abstract

Algae are the promising feedstock of biofuel. The screening of competent species and proper fertilizer supply is of the most important tasks. To accelerate this rather slow and laborious step, we developed an integrated high-throughput digital microfluidic (DMF) system that uses a discrete droplet to serve as a microbioreactor, encapsulating microalgal cells. On the basis of fundamental understanding of various droplet hydrodynamics induced by the existence of different sorts of ions and biological species, incorporation of capacitance-based position estimator, electrode-saving-based compensation, and deterministic splitting approach, was performed to optimize the DMF bioreactor. Thus, it enables all processes (e.g.,nutrient gradient generation, algae culturing, and analyzing of growth and lipid accumulation) occurring automatically on-chip especially in a high-fidelity way. The ability of the system to compare different microalgal strains on-chip was investigated. Also, the Chlorella sp. were stressed by various conditions and then growth and oil accumulation were analyzed and compared, which demonstrated its potential as a powerful tool to investigate microalgal lipid accumulation at significantly lower laborites and reduced time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.