Abstract

A closed-loop approach based on integrated computational material engineering was used to design, fabricate and characterize an Al–1.5Cu–0.8Sc–0.4Zr (wt%) alloy for laser powder bed fusion additive manufacturing (AM). Finalization of composition and prediction of solidification behavior and mechanical properties were done using calculation of phase diagrams (CALPHAD) and analytical tools. The microstructure of the printed alloy in as-built condition consisted of crack-free regions with fine-equiaxed grains which was consistent with CALPHAD results. Yield strength (YS) of ~349 ± 8 MPa was also in more than 90% agreement with predicted YS. The findings demonstrate an efficient methodology for application-based alloy design for AM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.