Abstract

Combinatorial histone post-translational modifications (HPTMs) form a complex epigenetic code that can be decoded by specific binding proteins, termed as readers. Their specific interplays have been thought to determine gene expression and downstream biological functions. However, it is still a big challenge to analyze such interactions due to various limitations including rather weak, transient, and complicated interactions between HPTMs and readers, the high dynamic property of HPTMs, and the low abundance of reader proteins. Here we sought to take advantage of DNA-templated and photo-cross-linking techniques to design a group of combinatorial histone PTM peptide probes for the identification of multivalent interactions among histone PTMs and readers. By use of trimethylation on histone H3K4 (H3K4me3) and phosphorylation on H3T3, we demonstrated that this approach can be successfully utilized for identification of the PTM crosstalk on the same histone. By use of H3K4me3 and acetylation on H4K16, we showed the potential application of the probe in the multivalent interactions among PTMs on different histones. Thus, this new chemical proteomics tool combined with mass spectrometry holds a promising potential in profiling of the readers of combinatorial HPTMs and characterization of crosstalk among multiple PTMs on histones and can be adapted for broad biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.