Abstract

Compositional data with a tridimensional structure are not uncommon in social sciences. The CANDECOMP/PARAFAC model is one of the most adequate techniques for modeling these arrays without confusing modes variability. Estimating parameters in this setting can be particularly difficult because compositional data are multicollinear by definition and because, in general, for socio-economic data the exact number of latent variables is harder to determine. The most used fitting procedure in the literature is the PARAFAC-ALS algorithm which, however, is sensitive to both the difficulties presented, namely it is sensitive to multicollinearity and to the use of the wrong number of factors. In this work an integrated PARAFAC-ALS algorithm initialized with SWATLD steps is proposed as an effective solution to these deficiencies. This approach is tested on simulated multicollinear data in comparison with standard ALS and proves capable of performing better in terms of robustness against over-factoring and temporary degeneracies, it is faster at converging even in case of collinearity and it still provides a least-squares solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.