Abstract

ABSTRACT Heat and mass transport phenomena in drying assisted by microwave or radio-frequency dielectric heating are analyzed. When drying at temperatures near boiling point or with high temperature gradients, the effect of the gas phase pressure gradient on moisture transfer within the solid can be important. The governing heat and mass transfer equations, including consideration of internal heat generation and the effect of the gas phase pressure gradient, are derived and solved in a one-dimensional system using an integral method. The integral model has been used to simulate dielectrically-enhanced convective drying of beds of polymer pellets, glass beads and alumina spheres with flow over the bed surface. Model predictions of drying rates and temperatures agree well with experimental data for these cases. The model provides a relatively fast and efficient way to simulate drying behavior with dielectric heating, and may be useful in design and optimization of dielectrically-enhanced convective drying p...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.