Abstract

Cells within a tumor microenvironment (TME) dynamically communicate and influence each other9s cellular states through an intercellular communication network (ICN). In cancers, intercellular communications underlie immune evasion mechanisms of individual tumors. We developed an instance-specific causal analysis framework for discovering tumor-specific ICNs. Using head and neck squamous cell carcinoma (HNSCC) tumors as a testbed, we first mined single-cell RNA-sequencing data to discover gene expression modules (GEMs) that reflect the states of transcriptomic processes within tumor and stromal single cells. By deconvoluting bulk transcriptomes of HNSCC tumors profiled by The Cancer Genome Atlas (TCGA), we estimated the activation states of these transcriptomic processes in individual tumors. Finally, we applied instance-specific causal network learning to discover an ICN within each tumor. Our results show that cellular states of cells in TMEs are coordinated through ICNs that enable multi-way communications among epithelial, fibroblast, endothelial, and immune cells. Further analyses of individual ICNs revealed structural patterns that were shared across subsets of tumors, leading to the discovery of 4 different subtypes of networks that underlie disparate TMEs of HNSCC. Patients with distinct TMEs exhibited significantly different clinical outcomes. Our results show that the capability of estimating instance-specific ICNs reveals heterogeneity of ICNs and sheds light on the importance of intercellular communication in impacting disease development and progression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.