Abstract

Abstract An on-line methodology to solve two-dimensional inverse heat conduction problems (IHCP) is presented. A new input estimation approach based on the Kalman filtering technique is developed to estimate the two separate unknown heat flux inputs on the two boundaries in real time. A recursive relation between the observed value of the residual sequence with unknown heat flux and the theoretical residual sequence of the Kalman filter that assumes known heat flux is formulated. A real-time least-squares algorithm is derived that uses the residual innovation sequence to compute the magnitude of heat flux. This recursive approach facilitates practical implementation, and its capabilities are demonstrated in several typical cases with discontinuous and time-varying heat flux inputs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.