Abstract

Acidification of blood entering the membrane lung (ML) converts bicarbonate ions into dissolved gaseous CO2, increasing the pCO2 transmembrane gradient and thus the extracorporeal carbon dioxide removal (ECCO2R) [1]. Extracorporeal blood acidification has previously been achieved by infusion of lactic acid, which proved to be effective in rising ECCO2R but determined a mild increase of total CO2 production and induced a slight degree of metabolic acidosis [2], thus limiting the overall effectiveness of such treatment.

Highlights

  • Acidification of blood entering the membrane lung (ML) converts bicarbonate ions into dissolved gaseous CO2, increasing the pCO2 transmembrane gradient and the extracorporeal carbon dioxide removal (ECCO2R) [1]

  • The aim of this study is to evaluate in-vitro the efficiency of an ECCO2R technique enhanced by an innovative acidification system featuring an electrodialysis unit, which does not require the infusion of any exogenous acid

  • At the end of each step samples were withdrawn from blood and dialysiscircuit, and CO2 removal (VCO2) was measured

Read more

Summary

Introduction

Acidification of blood entering the membrane lung (ML) converts bicarbonate ions into dissolved gaseous CO2, increasing the pCO2 transmembrane gradient and the extracorporeal carbon dioxide removal (ECCO2R) [1]. Extracorporeal blood acidification has previously been achieved by infusion of lactic acid, which proved to be effective in rising ECCO2R but determined a mild increase of total CO2 production and induced a slight degree of metabolic acidosis [2], limiting the overall effectiveness of such treatment

Objectives
Results
Methods
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.