Abstract

We present a fast, one step method to obtain PVA/graphene/chlorhexidine nanofibrous membranes, with a crosslinking gradient along their cross-section. Briefly, polymeric solutions were electrospun onto a heated plate, enabling the in situ crosslinking of PVA macromolecules. Of course, the crosslinking degree of such structures was found to decrease upon the distance from the plate during deposition. The outcomes reveal the crucial role of graphene, capable of promoting heat transfer throughout the entire structure, thus leading to 70–80% crosslinking degrees and preventing delamination issues. Such membranes were compared to untreated and oven thermally treated ones, and a robust relationship between processing, structure and properties was outlined, with a special focus on the release behaviour of such materials, which proved to be tuneable from instantaneous/burst to sustained release (up to 500 h) by adjusting formulation and preparation technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.