Abstract

A novel ultrasensitive nanobody-based electrochemical immunoassay was prepared for assessing human exposure to pyrethroid insecticides. 3-Phenoxybenzoic acid (3-PBA) is a common human urinary metabolite for numerous pyrethroids, which broadly served as a biomarker for following the human exposure to this pesticide group. The 3-PBA detection was via a direct competition for binding to alkaline phosphatase-embedded nanobodies between free 3-PBA and a 3-PBA-bovine serum albumin conjugate covalently immobilized onto citric acid-decorated nylon nanofibers, which were incorporated on a screen-printed electrode (SPE). Electrochemical impedance spectroscopy (EIS) was utilized to support the advantage of the employment of nanofibrous membranes and the success of the immunosensor assembly. The coupling between the nanofiber and nanobody technologies provided an ultrasensitive and selective immunosensor for 3-PBA detection in the range of 0.8 to 1000 pg mL-1 with a detection limit of 0.64 pg mL-1. Moreover, when the test for 3-PBA was applied to real samples, the established immunosensor proved to be a viable alternative to the conventional methods for 3-PBA detection in human urine even without sample cleanup. It showed excellent properties and stability over time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.