Abstract
In this paper, we describe AppxDL, an algorithm for approximate classification of workloads of running processes in big data environments via deep learning (deep neural networks). The Deep Neural Network is trained with some workloads which belong to known categories (e.g., compiler, file compressor, etc...). Its purpose is to extract the type of workload from the executions of reference programs, so that a Neural Model of the workloads can be learned. When the learning phase is completed, the Deep Neural Network is available as Neural Model of the known workloads. We describe the AppxDL algorithm and we report and discuss some significant results we have achieved with it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.