Abstract

Self-healing hydrogels attract broad attention as cell/drug carriers for direct injection into damaged tissues or as bioinks for three-dimensional (3D) printing of tissue-like constructs. For application in 3D printing, the self-healing hydrogels should maintain the steady rheological properties during printing process, and be further stabilized by secondary post-printing crosslinking. Here, a chitosan self-healing hydrogel is developed for injectable hydrogel and printable ink using phenol-functionalized chitosan and dibenzaldehyde-terminated telechelic poly(ethylene glycol). Phenol functionalization of chitosan can introduce unique interaction that allows the hydrogel to possess fast gelling rate, good self-healing ability, and long-range critical gel behavior, as well as secondary visible light-crosslinking capability. The hydrogel is easily pre-formed in a syringe and extruded through a 26-gauge needle to produce a continuous and stackable filament. The cell-laden hydrogel is successfully printed into a 3D construct. Moreover, the hydrogel is developed for modular 3D printing, where hydrogel modules (LEGO-like building blocks) are individually printed and assembled into an integrated construct followed by secondary visible light-crosslinking. The versatile phenol-functionalized chitosan self-healing hydrogel will open up numerous potential applications, particularly in 3D bioprinting and modular 3D bioprinting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.