Abstract

Soft-tissue repair is currently limited by the availability of autologous tissue sources and the absence of an ideal soft-tissue replacement comparable to native adipose tissue. Extracellular matrix-based biomaterials have demonstrated great potential as instructive scaffolds for regenerative medicine, mechanically and biochemically defined by the tissue of origin. As such, the distinctive high lipid content of adipose tissue requires unique processing conditions to generate a biocompatible scaffold for soft-tissue repair. Human adipose tissue was decellularized to obtain a matrix devoid of lipids and cells while preserving extracellular matrix architecture and bioactivity. To control degradation and volume persistence, the scaffold was cross-linked using hexamethylene diisocyanate and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. In vitro studies with human adipose-derived stem cells were used to assess cell viability and adipogenic differentiation on the biomaterial. In vivo biocompatibility and volume persistence were evaluated by subcutaneous implantation over 12 weeks in a small-animal model. The scaffold provided a biocompatible matrix supporting the growth and differentiation of adipose-derived stem cells in vitro. Cross-linking the matrix increased its resistance to enzymatic degradation. Subcutaneous implantation of the acellular adipose matrix in Sprague-Dawley rats showed minimal inflammatory reaction. Adipose tissue development and vascularization were observed in the implant, with host cells migrating into the matrix indicating the instructive potential of the matrix for guiding tissue remodeling and regeneration. With its unique biological and mechanical properties, decellularized adipose extracellular matrix is a promising biomaterial scaffold that can potentially be used allogenically for the correction of soft-tissue defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.