Abstract

Kinetic evidence are presented for the existence of a high affinity inhibitory site for ADP /K i < 10 −7 M/ in the oligomycin-sensitive ATPase of beef heart submitochondrial particles. The ATPase·ADP complex is completely inactive in the ATPase reaction; it can be converted into active ATPase in a slow ATP-dependent reaction. The dependence of a first order rate constant for activation of the enzyme·ADP complex on concentration of ATP gives a K m value equal to that for ATP in the ATPase reaction. The data obtained suggest that the membrane-bound ATPase complex contains two kinetically distinct nucleotide-binding centers, i.e. center 1 binds ATP or ADP with a formation of enzyme-substrate or enzyme-competitive inhibitor complexes: center 2 binds ADP with a formation of a complex which is able to bind ATP in center 1 and unable to hydrolyze the bound ATP. The binding of ATP or ADP in center 1 changes the reactivity of center 2 towards ADP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.