Abstract

BackgroundThe study of malaria transmission requires the experimental infection of mosquitoes with Plasmodium gametocytes. In the laboratory, this is achieved using artificial membrane feeding apparatus that simulate body temperature and skin of the host, and so permit mosquito feeding on reconstituted gametocyte-containing blood. Membrane feeders either use electric heating elements or complex glass chambers to warm the infected blood; both of which are expensive to purchase and can only be sourced from a handful of specialized companies. Presented and tested here is a membrane feeder that can be inexpensively printed using 3D-printing technology.ResultsUsing the Plasmodium falciparum laboratory strain NF54, three independent standard membrane feeding assays (SMFAs) were performed comparing the 3D-printed feeder against a commercial glass feeder. Exflagellation rates did not differ between the two feeders. Furthermore, no statistically significant difference was found in the oocyst load nor oocyst intensity of Anopheles stephensi mosquitoes (mean oocyst range 1.3–6.2 per mosquito; infection prevalence range 41–79%).ConclusionsOpen source provision of the design files of the 3D-printed feeder will facilitate a wider range of laboratories to perform SMFAs in laboratory and field settings, and enable them to freely customize the design to their own requirements.

Highlights

  • The study of malaria transmission requires the experimental infection of mosquitoes with Plasmodium gametocytes

  • Plasmodium falciparum standard membrane feeding assay (SMFA) Plasmodium falciparum NF54 gametocytes were prepared by standard methods [7] and between 13–16 days after culture induction were fed to 3–7 days old Anopheles stephensi mosquitoes

  • A piece of ­Parafilm® stretched thin in both directions was wrapped over the underside of the feeder and a 500 μl sample containing red blood cells (RBC)/gametocytes/serum was introduced via the injection holes (Fig. 1c)

Read more

Summary

Introduction

The study of malaria transmission requires the experimental infection of mosquitoes with Plasmodium gametocytes. In the laboratory, this is achieved using artificial membrane feeding apparatus that simulate body temperature and skin of the host, and so permit mosquito feeding on reconstituted gametocyte-containing blood. Transmission of malaria from vertebrate host to mosquito is mediated by the mature sexual stages of the Plasmodium life cycle—male and female gametocytes. Gametocytes sense their uptake into the mosquito midgut by a decrease in temperature and the presence of mosquito-derived xanthurenic acid and rapidly differentiate into male and female gametes [1]. By using a CAD package the size of the feeder can be up- or downscaled to hold more or less volume respectively

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.