Abstract

There are many neurological rare diseases where animal models have proven inadequate or do not currently exist. NGLY1 Deficiency, a congenital disorder of deglycosylation, is a rare disease that predominantly affects motor control, especially control of neuromuscular action. In this study, NGLY1-deficient, patient-derived induced pluripotent stem cells (iPSCs) were differentiated into motoneurons (MNs) to identify disease phenotypes analogous to clinical disease pathology with significant deficits apparent in the NGLY1-deficient lines compared to the control. A neuromuscular junction (NMJ) model was developed using patient and wild type (WT) MNs to study functional differences between healthy and diseased NMJs. Reduced axon length, increased and shortened axon branches, MN action potential (AP) bursting and decreased AP firing rate and amplitude were observed in the NGLY1-deficient MNs in monoculture. When transitioned to the NMJ-coculture system, deficits in NMJ number, stability, failure rate, and synchronicity with indirect skeletal muscle (SkM) stimulation were observed. This project establishes a phenotypic NGLY1 model for investigation of possible therapeutics and investigations into mechanistic deficits in the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.