Abstract

With the development of Internet of Things, the position information of indoor objects becomes more important for most application scenarios. This paper presents an ultrasonic indoor positioning system, which can achieve centimeter-level precise positioning of objects moving indoors. Transmitting nodes, receiving nodes, and display control terminal are needed to constitute the entire system. The system is based on long-baseline positioning technology that uses code division multiplexing access mechanism. There is no limit to the number of receiving nodes as the system works in the up-transmit-down-receive mode. Positioning of a receiving node is found based on ultrasonic Time of Arrival ranging technology. To accurately determine the positioning, there must be at least four or five transmitting nodes. The working radius will not be less than 5 meters when the height is larger than 3 meters. The system uses wideband pseudorandom noise signal called Gold sequences for multiuser identification and slant range measurement. The paper first gives a brief introduction of popular indoor ultrasonic positioning methods and then describes the theory of proposed algorithm and provides the simulation results. To examine the correctness of the approach and its practicality, the practical implementation and experimental results are provided also in the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.