Abstract

Human liver cancer is one of the most frequently diagnosed cancers worldwide. The development of resistance to therapy limits the application against the disease. To improve treatment, new effective anticancer agents are constantly pursued. Previously, we reported that an indolylquinoline, 3-((7-ethyl-1H-indol-3-yl)-methyl)-2-methylquinoline (EMMQ), is effective in suppressing the growth of human lung cancer by impairing mitochondria functions. The present study revealed that EMMQ inhibited cell growth and induced apoptosis in liver cancer cells, but not in normal cells. This study demonstrated that EMMQ induced DNA damage by activating p53 and γ-H2AX and cell arrest by suppressing cyclinD1 and CDK2. Damaged DNA injured mitochondrial functions by lowering the membrane potential and producing reactive oxygen species. The subsequent mitochondrial cytochromec release attenuated pro-survival signals and increased apoptotic characteristics. Introduction of p53 shRNA abrogated drug effects by reducing DNA damage while maintaining mitochondria integrity. In brief, the study demonstrates that the effectiveness of EMMQ accentuated apoptosis of hepatocarcinoma cells by activating p53. Based on these collective findings, the study offered a new perspective of EMMQ that was shown to be a promising candidate to treat liver cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.