Abstract
A multilevel algorithm is presented for direct, parallel factorization of the large sparse matrices that arise from finite element and spectral element discretization of elliptic partial differential equations. Incomplete nested dissection and domain decomposition are used to distribute the domain among the processors and to organize the matrix into sections in which pivoting is applied to stabilize the factorization of indefinite equation sets. The algorithm is highly parallel and memory efficient; the efficient use of sparsity in the matrix allows the solution of larger problems as the number of processors is increased, and minimizes computations as well as the number and volume of communications among the processors. The number of messages and the total volume of messages passed during factorization, which are used as measures of algorithm efficiency, are reduced significantly compared to other algorithms. Factorization times are low and speedups high for implementation on an Intel iPSC/860 hypercube computer. Furthermore, the timings for forward and back substitutions are more than an order-of-magnitude smaller than the matrix decomposition times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.