Abstract

BackgroundThe present study aimed to develop an in vitro model for stain removal from natural enamel for the assessment and comparison of oral hygiene products.MethodsBovine teeth (n = 8 per group) were ground/polished to provide flat enamel specimens and ferric-tannate deposits were precipitated onto the enamel surfaces. The ferric-tannate stained enamel specimens were brushed using an in vitro tooth-brushing simulator with slurries containing commercially available toothpaste products, dental abrasive particles, and sodium tripolyphosphate (STP) solutions of different concentrations. The colour of the enamel surfaces was measured using a spectrophotometer before and after stain application as well as after the brushing treatments.ResultsDifferences in stain removal efficacy were found between the toothpastes categorised as whitening and non-whitening comprising of different types of dental abrasives (hydrated silica and alumina). A mean value of 27% for stain removal was detected for the three non-whitening toothpastes and 59% of stain removal was detected for the three whitening toothpastes after 1000 strokes. Compared with the slurry with Zeodent 113 abrasive alone, the addition of STP provided better performance for stain removal under the same brushing conditions (mean value of 62% for Zeodent 113 abrasive alone and 72% with the addition of 5% (w/w) STP after 1000 strokes). No difference was evident between the STP concentration of 5% (w/w) and 10% (w/w).ConclusionsThe ferric-tannate/bovine enamel model reported here provides good stain retention, is rapidly and easily prepared, and is shown to be progressively and reproducibly sensitive to toothbrushing using different toothpastes and surfactant/chelating agent solutions. Importantly, it provides good discrimination between various oral hygiene products.The stain removal assay reported here has considerable potential to enable comparative assessments of different toothpaste types in terms of their cleaning capabilities.

Highlights

  • The present study aimed to develop an in vitro model for stain removal from natural enamel for the assessment and comparison of oral hygiene products

  • Toothwhitening toothpastes function by abrasive removal of extrinsic stain associated with the dental plaque, the acquired pellicle and the enamel surface together with the chemical cleaning action of constituents, such as sodium tripolyphosphate (STP), sodium pyrophosphate, sodium hexametaphosphate, hydrogen peroxide, as well as by the activity of the enzymes papain and bromelain [4]

  • To investigate the effects of surface roughness on the retention and removal of the stain, eight bovine enamel specimens per treatment group were prepared to either: a) 600-grit SiC and 3 μm diamond finish (Polished surface group), b) 400-grit SiC ground finish (Partially roughened surface group), or c) 280-grit SiC ground finish (Roughened surface group) with 5 min ultrasonication in water following each treatment for removal of any residual grinding/ polishing materials

Read more

Summary

Introduction

The present study aimed to develop an in vitro model for stain removal from natural enamel for the assessment and comparison of oral hygiene products. In vitro models allow rapid screening of a range of potential products; the most effective can subsequently be clinically assessed in RCTs. Various approaches have been used to investigate extrinsic stain removal by oral care products using a wide range of substrates such as polymethylmethacrylate, hydroxyapatite and enamel (human or bovine). One of the most commonly applied in vitro approaches uses cut, polished and acid etched bovine enamel specimens stained with a solution containing a combination of coffee/tea/gastric mucin/Sarcina lutea turtox [19]. A recent model has utilised a ferric-tannate coating deposited onto highly polished sintered hydroxyapatite discs and was reported to mimic the daily control of pellicle growth, maturation and staining [24]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.