Abstract

Changes of neuronal membrane characteristics in somatosensory barrel cortex and barreloid thalamus were investigated in rats following unilateral transection of the infraorbital nerve. Kainate induced Co 2+-uptake method and image analysis were used to assess the Ca 2+ permeability of non-NMDA ( N-methyl- d-aspartate) glutamate receptors. Changes in some biophysical parameters of the affected cortical neurons were also investigated by intracellular recording in slice experiments. The altered neuronal activity was measured on days 1, 5 and 14 after surgery. Kainate induced Co 2+ uptake increased markedly reflecting enhanced Ca 2+ permeability of α-amino-3-hydroxy-5-methyl-isoxazole-4-propionate/kainate (AMPA/KAIN)-type receptors. Changes were more pronounced in the cortex than in the thalamus and peaked on the first day following nerve transection. After that, parameters gradually returned to the normal level. However, a small enhancement was still detectable in the cortex at the end of the 2-week-long observation period. In parallel with the increased Co 2+-uptake, moderate membrane potential changes, stronger spiking activity and enhanced excitability were characteristic for cortical neurons. The observed alterations in neuronal characteristics underlie the reorganization and regeneration processes following injuries or surgeries. We can conclude that immediate change of the receptive field in the barrel cortex following unilateral nerve transection is based on changes in biophysical parameters of the neurons. Altered peripheral activation evokes changes in the neuronal activity, thus providing opportunity for a quick synaptic rearrangement. AMPA/KAIN-type glutamate receptors have a decisive role in the regulation of these processes. This kind of synaptic plasticity is more significant in the cortex than in the thalamus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.