Abstract

To compare the monotonic biomechanical properties and fatigue life of a 5.5-mm-broad locking compression plate (5.5 LCP) fixation with a 4.5-mm-broad locking compression plate (4.5 LCP) fixation to repair osteotomized equine 3rd metacarpal (MC3) bones. In vitro biomechanical testing of paired cadaveric equine MC3 with a middiaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. Fifteen pairs of adult equine cadaveric MC3 bones. Fifteen pairs of equine MC3 were divided into 3 test groups (5 pairs each) for (1) 4-point bending single cycle to failure testing, (2) 4-point bending cyclic fatigue testing, and (3) torsional single cycle to failure testing. An 8-hole, 5.5 LCP was applied to the dorsal surface of 1 randomly selected bone from each pair and an 8-hole, 4.5 LCP was applied dorsally to the contralateral bone from each pair using a combination of cortical and locking screws. All plates and screws were applied using standard ASIF techniques. All MC3 bones had middiaphyseal osteotomies. Mean test variable values for each method were compared using a paired t-test within each group with significance set at P<.05. Mean yield load, yield bending moment, composite rigidity, failure load, and failure bending moment, under 4-point bending, single cycle to failure, of the 5.5 LCP fixation were significantly greater than those of the 4.5 LCP fixation. Mean cycles to failure in 4-point bending of the 5.5 LCP fixation (170,535+/-19,166) was significantly greater than that of the 4.5 LCP fixation (129,629+/-14,054). Mean yield load, mean composite rigidity, and mean failure load under torsional testing, single cycle to failure was significantly greater for the broad 5.5 LCP fixation compared with the 4.5 LCP fixation. In single cycle to failure under torsion, the mean+/-SD values for the 5.5 LCP and the 4.5 LCP fixation techniques, respectively, were: yield load, 151.4+/-19.6 and 97.6+/-12.1 N m; composite rigidity, 790.3+/-58.1 and 412.3+/-28.1 N m/rad; and failure load: 162.1+/-20.2 and 117.9+/-14.6 N m. The 5.5 LCP was superior to the 4.5 LCP in resisting static overload forces (palmarodorsal 4-point bending and torsional) and in resisting cyclic fatigue under palmarodorsal 4-point bending. These in vitro study results may provide information to aid in selection of an LCP for repair of equine long bone fractures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.