Abstract

Zinc (Zn)-based composites have been received adequate attention lately in the biomedical field as degradable biomaterials owing to their simple preparation process, inherent biodegradability, intrinsic biological activity, and good biocompatibility. Nevertheless, the low mechanical strength and fast corrosion rate of Zn-based composites caused by a large number of coarse reinforcement particles have severely impeded their further clinical application. This work reports a promising method to fabricate an in situ biodegradable Zn–5Mg2Ge composite with high mechanical properties, wear resistance, corrosion resistance, and cytocompatibility via high-intensity ultrasonication and followed by hot-rolling. After hot rolling, the ultrasonicated Zn–5Mg2Ge composite exhibited the best mechanical properties and hardness with a yield strength, an ultimate tensile strength, elongation, Vickers hardness, and Brinell hardness of 142.9 MPa, 253.6 MPa, 8.9%, 109.5 HV, and 104.0 HB, respectively. Further, the ultrasonicated Zn–5Mg2Ge composite after hot-rolling exhibited significantly higher corrosion and wear resistance than its un-ultrasonicated counterpart in Hanks’ solution. The diluted extract (12.5% concentration) of the.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.