Abstract

An in situ potential-enhanced ion transport system based on the electrochemically switched ion permselectivity (ESIP) membrane was developed for the effective removal of Ca2+ and Mg2+ from dilute aqueous solution. In this system, uptake/release of the target ions can be realized by modulating the redox states of the ESIP membrane, and continuously permselective separation of the target ions through the ESIP membrane can be achieved by tactfully applying a pulse potential on the membrane and combining with an external electric field. In this study, iron hexacyanoferrate (FeHCF)–polypyrrole/polystyrenesulfonate (PPy/PSS) ESIP membrane with high conductivity and high flux was prepared by using stainless steel wire mesh (SSWM) as conductive substrate. The driving force for the ion transport was analyzed in detail by the equivalent circuit of the system. It is found that the FeHCF interlayer between the SSWM substrate and the PPy/PSS membrane played an important role in removing Ca2+ and Mg2+ from aqueous solu...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.