Abstract

The microstructural evolutions and dynamic properties of the Zr77Rh23 alloy during the rapid cooling process have been studied by molecular dynamics (MD) simulations using tight-binding (TB) potential. The total pair distribution functions [or structure factors, S(q)], g(r), calculated at different temperatures are in good agreement with the ab initio MD (AIMD) simulation (or experimental) results. The splitting in the second peak of all g(r) is notable for the formation and development of a medium-range order (MRO) in the Zr77Rh23 system. Moreover, the total number of atoms determined from TB-MD simulations at 300 K is also consistent with the number of atoms of the three shells for the Bergman-type MRO cluster and AIMD simulation results. By analyzing the structure of the system with methods such as the Honeycutt–Andersen index, Voronoi tessellation, and bond-angle distribution, it has been shown that the icosahedron short-range order (SRO) increases upon cooling. The dominant short-range structure in Zr77Rh23 metallic glass is found to consist mostly of perfect and distorted icosahedral clusters. The findings show that, for all temperatures, Zr atoms have greater mobility than Rh atoms. The critical temperature Tc estimated from fitting the mode-coupling theory equation is ∼993 K. A dynamic crossover is observed at temperatures around Tc. The present findings contribute to understanding the nature of the atomic local structures of the Zr77Rh23 alloy during the cooling process and the formation of SRO/MROs in metallic glasses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.