Abstract

Thermal comfort of occupants is key feedback information for improving indoor environment and managing building energy use. Through analyzing inertial measurement units (IMU) data from wearable devices with machine learning, thermal comfort of occupants can be detected in a non- intrusive method. This paper proposed a dataset consisted of IMU data collected from 30 participants (14 males and 16 females, aged 23.23 ± 1.70 years, height 168.67 ± 8.02 cm, and weight 59.55 ± 10.96 kg) who wore two IMUs on their hands while performing 30 thermal comfort activities (10 cold-related, 10 hot-related, and 10 neutral activities) according to their personal habits.The database is divided into two parts: (1) Single activities data, which includes 4500 samples acquired from experiments where each participant was asked to perform 30 thermal comfort activities individually. (2) Continuous multi-activity data, which comprise 360 samples collected while participants performed a series of randomly assigned activities in a more natural and continuous manner. The combination of these two parts provides a comprehensive dataset for both the training and testing phases of machine learning models. By offering detailed labels, this database aims to serve as a foundation for research exploring machine learning applications in detecting occupant thermal comfort, ultimately contributing to improved indoor environments and more efficient building energy management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.