Abstract

Antibiotic drugs are comprehensively used in treating infectious animals, mainly food-producing animals, which may severely affect other living organisms. Hence, it is necessary to develop a device to monitor trace level of these drug in food samples by a sensitive method. Carbon nanomaterials are usually fabricated as a disposable electrode in an electrochemical sensing application; however, its hydrophobicity nature causes poor electrode stability. An effective strategy is followed in this study to improve the aqueous dispersion of vapor-grown carbon fiber (VGCF) materials through the bio-inspired polydopamine (PDA) functionalization approach. The PDA functionalized VGCF (PDA-VGCF) is significantly characterized by spectroscopic and microscopic methods. The improved hydrophilicity of PDA-VGCF composite materials can offer an easy way to prepare catalyst slurry for the coating of a glassy carbon electrode (GCE) and used to determine the chloramphenicol (CAP) antibiotic drug. Interestingly, cyclic and differential pulse voltammetry studies are performed to observe the electrocatalysis of CAP using PDA-VGCF/GCE, displays a good linear response range (0.01–142 µM), lower detection limit (3 nM), and higher sensitivity (0.68 µAµM−1 cm−2) with long-time stability up to 30 days. Furthermore, PDA-VGCF/GCE shows an admirable selectivity while existing with other interference compounds and practical feasibility are also evaluated in apple juice, milk, and honey samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.