Abstract

Measured load data play a crucial role in the fatigue durability analysis of mechanical structures. However, in the process of signal acquisition, time domain load signals are easily contaminated by noise. In this paper, a signal denoising method based on variational mode decomposition (VMD), wavelet threshold denoising (WTD), and singular spectrum analysis (SSA) is proposed. Firstly, a simple criterion based on mutual information entropy (MIE) is designed to select the proper mode number for VMD. Detrended fluctuation analysis (DFA) is adopted to obtain the noise level of the noisy signal, which can optimize the selection of MIE threshold. Meanwhile, the noisy signal is adaptively decomposed into band-limited intrinsic mode functions (BLIMFs) by using VMD. In addition, weighted-permutation entropy (WPE) is applied to divide the BLIMFs into signal-dominant BLIMFs and noise-dominant BLIMFs. Then, the signal-dominant BLIMFs are reconstructed with the noise-dominant BLIMFs processed by WTD. Finally, SSA is implemented for the reconstructed signal. Experimental results of synthetic signals demonstrate that the presented method outperforms the conventional digital signal denoising methods and the related methods proposed recently. Effectiveness of the proposed method is verified through experiments of the measured load signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.