Abstract
For the present study, we developed a three-dimensional numerical method based on the level set method that is applicable to two-phase systems with high-density ratio. The present solver for the Navier-Stokes equations was based on the projection method with a non-staggered grid. We improved the treatment of the convection terms and the interpolation method that was used to obtain the intermediate volume flux defined on the cell faces. We also improved the solver for the pressure Poisson equations and the reinitialization procedure of the level set function. It was shown that the present solver worked very well even for a density ratio of the two fluids of 1:1000. We simulated the coalescence of two rising bubbles under gravity, and a gas bubble bursting at a free surface to evaluate mass conservation for the present method. It was also shown that the volume conservation (i.e., mass conservation) of bubbles was very good even after bubble coalescence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.