Abstract

Delayed hydride cracking (DHC) is an important concern for pressure tubes used in nuclear reactors. In this paper, an improved analytical process-zone model is developed based on the deformation fracture criteria. A V-notch with rounded root, which is widely adopted in mechanical testing of DHC, is considered and the proposed model includes the effect of both notch angle and tip radius. Comparisons with experiments show that the proposed model has a prediction accuracy closer to the current engineering process-zone model but with slightly less conservatism. The model is extended to account for plasticity and constraint effects at the flaw tip by introducing an empirical factor that depends on key material and geometric parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.