Abstract

This paper presents an improved symplectic precise integration method (PIM) to increase the accuracy and keep the stability of the computation of the rotating rigid–flexible coupled system. Firstly, the generalized Hamilton's principle is used to establish a coupled model for the rotating system, which is discretized and transferred into Hamiltonian systems subsequently. Secondly, a suitable symplectic geometric algorithm is proposed to keep the computational stability of the rotating rigid–flexible coupled system. Thirdly, the idea of PIM is introduced into the symplectic geometric algorithm to establish a symplectic PIM, which combines the advantages of the accuracy of the PIM and the stability of the symplectic geometric algorithm. In some sense, the results obtained by this method are analytical solutions in computer for a long span of time, so the time-step can be enlarged to speed up the computation. Finally, three numerical examples show the stability of computation, the accuracy of solving stiff equations and the capability of solving nonlinear equations, respectively. All these examples prove the symplectic PIM is a promising method for the rotating rigid–flexible coupled systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.