Abstract

AbstractGas–liquid bubble column reactors are often used in industry because of their favorable mass transfer characteristics. The bubble mass boundary layer in these systems is generally one order of magnitude thinner than the momentum boundary. To resolve it in simulations, a subgrid scale model will account for the sharp concentration variation in the vicinity of the interface. In this work, the subgrid scale model of Aboulhasanzadeh et al., Chem Eng Sci, 2012, 75:456–467 embedded in our in‐house front tracking framework, has been improved to prevent numerical mass transfer due to remeshing operations. Furthermore, two different approximations of the mass distribution in the boundary layer have been tested. The local and global predicted Sherwood number has been verified for mass transfer from bubbles in the creeping and potential flow regimes. In addition, the correct Sherwood number has been predicted for free rising bubbles at several Eötvös and Morton numbers with industrial relevant Schmidt numbers (103–105).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.