Abstract
The twin propeller system can be powered by a motor with dual-rotating rotors, which generally necessitates that both rotors run at the same speed to prevent rolling. The motor with dual-rotating rotors is popular for applications that benefit from high torque density and an axially compact form factor. In order to minimize the effects of load disturbances and internal parameter perturbations on the motor performance, this paper proposes a control strategy combining disturbance observer and sliding mode control (SMC) technologies to realize the purpose of both rotors rotating at the same speed. There are issues with the conventional proportional-integral (PI) control for load disturbances and motor parameter variations, whereas the SMC method has its invariant properties. Meanwhile, the system disturbances obtained by a disturbance observer are estimated to be used as feed-forward compensation for the SMC control in order to reduce the undesired chattering during the SMC control process. The validity and practicability of the control strategies proposed in this paper are demonstrated by both simulations and experiments.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have