Abstract

To control the swarm to fly inside the limited search space and deal with the problems of slow search speed and premature convergence in particle swarm optimization algorithm, the authors applied the theory of topology, and proposed a novel quotient space-based boundary condition named QsaBC by using the properties of quotient space and homeomorphism in this paper. In QsaBC, Search space-zoomed factor and Attractor factor are introduced according to analyzing the dynamic behavior and stability of particles, which not only reduce the subjective interference and enforce the capability of global search, but also enhance the power of local search and escaping from an inferior local optimum. Four CEC’2008 benchmark functions were selected to evaluate the performance of QsaBC. Comparative experiments show that QsaBC can get the satisfactory optimization solution with fast convergence speed. Furthermore, QsaBC is more effective to do with errant particles, easier to calculate and has better robustness than other experienced methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.