Abstract

In this article, the construction and implementation of a seventh order weighted essentially non-oscillatory scheme is reported for solving hyperbolic conservation laws. Local smoothness indicators are constructed based on L1-norm, where a higher order interpolation polynomial is used with each derivative being approximated to the fourth order of accuracy with respect to the evaluation point. The global smoothness indicator so constructed ensures the scheme achieves the desired order of accuracy. The scheme is reviewed in the presence of critical points and verified the numerical accuracy, convergence with the help of linear scalar test cases. Further, the scheme is implemented to non-linear scalar and system of equations in one and two dimensions. As the formulation is based on method of lines, to move forward in time linear strong-stability-preserving Runge–Kutta scheme (lSSPRK) for the linear problems and the fourth order nonlinear version of five stage strong stability preserving Runge–Kutta scheme (SSPRK(5, 4)) for nonlinear problems is used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.