Abstract
The extraction of macromolecules from nano-self-assembled material can be used as a laboratory model for enhancing oil recovery in reservoirs. By combining Darcy’s law and Poiseuille equation, an improved nuclear magnetic resonance (NMR) permeability model, suitable for macromolecular flow in mesopores is obtained. The calibration coefficients in the Coates equation are expressed in terms of the physical parameters of pore throat ratio rb/rt, tortuosity, and thickness of bond film in the improved model. The results show that the proportion of irreducible fluid to total fluid obtained through NMR characterization can reflect the variation tendency of irreducible macromolecule and water. By simplifying the pores of the extracted samples, the thickness model of irreducible macromolecule and water is established with the total thicknesses calculated as 1.482 nm, 1.585 nm, 1.674 nm, and 1.834 nm. The corresponding permeability results obtained from the NMR characterization (KNMR) are 7.39 mD, 6.02 mD, 5.27 mD, and 6.25 mD. The permeability results obtained from mercury intrusion experiment (KHG) are 5.10 mD, 4.73 mD, 5.82 mD, and 5.56 mD, and those from the Darcy flow experiment (KD) are 4.1 mD and 5.19 mD. The absolute deviation between KNMR and KHG varies from 0.69 to 2.29 mD, while that between KNMR and KD is 1.58 mD. This method can be applied to the enhanced recovery of shale oil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.