Abstract

Many approaches have been proposed to enhance the accuracy of protein structural class. However, such approaches did not cover the low-similarity sequences which are proved to be quite challenging. In this study, a 71-dimensional integrated feature vector is extracted from the predicted secondary structure and hydropathy sequence using newly devised strategies for the purpose of categorising proteins into their major structural classes: all-α, all-β, α/β and α+β. A new combined method containing two machine learning algorithms has been proposed for feature selections in this study. Support vector machine (SVM) and genetic algorithm (GA) are combined using the wrapper method for the purpose of selecting top N features based on the level of their importance. The proposed method is evaluated using the jackknife upon two low-similarity sequences datasets, i.e. ASTRAL and D640. The overall accuracies of 83.93 and 92.2% are reported for the predictions pertaining to ASTRALtesting and D640 benchmarks, exceeding most of the current approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.